神戸大前期文系

各項が正である数列 $\{a_n\}$ を次のように定める. a_1 は関数 $y=rac{1}{3}x^3-10x$ $(x\geq 0)$ が最小値をとると きのxの値とする. a_{n+1} は関数 $y=\frac{1}{3}x^3-10a_nx$ $(x\geq 0)$ が最小値をとるときのxの値とする. 数列

(3) 1個のサイコロを3回投げて出た目の積が20の約数となる確率を求めよ.

(2) 1個のサイコロを投げて出た目がnの約数となる確率が $\frac{5}{c}$ であるようなnで最小のものを求めよ.

(5) $\frac{a_1a_2a_3}{100}$ の値を求めよ. n を自然数とする. 以下の間に答えよ.

(1) 1 個のサイコロを投げて出た目が必ず n の約数となるような n で最小のものを求めよ.

(3) b_{n+1} を b_n を用いて表せ. (4) 数列 $\{b_n\}$ の一般項を求めよ.

 $\{b_n\}$ を $b_n = \log_{10} a_n$ で定める. 以下の問に答えよ. (1) $a_1 \, b_1 \, \delta \, x$ あよ. (2) a_{n+1} を a_n を用いて表せ.

a, b, c は実数で, $a \neq 0$ とする. 放物線 C と直線 ℓ_1, ℓ_2 をそれぞれ $C: y = ax^2 + bx + c, \ell_1: y = -3x + 3$, $\ell_2: y = x + 3$ で定める. ℓ_1 , ℓ_2 がともに C に接するとき,以下の間に答えよ. (1) b を求めよ. また c を a を用いて表せ.

(2) C が x 軸と異なる 2 点で交わるとき, $\frac{1}{x}$ のとりうる値の範囲を求めよ. (3) C と ℓ_1 の接点を P, C と ℓ_2 の接点を Q, 放物線 C の頂点を R とする. a が (2) の条件を満たしな

がら動くとき、 $\triangle PQR$ の重心 G の軌跡を求めよ.

(1)
$$f(x) = \frac{1}{3}x^3 - 10x$$
 ($x \ge 0$) とすると
 $f'(x) = x^2 - 10 = (x + 10)(x - 10)$
 $5 > 7$ 欠 ≥ 0 で 減 表 は 以 > 0 ように なる

X	0	111	110	
f'(x)		_	0	+
f(x)	0	K	是小	1

ゆえに
$$x=\sqrt{10}$$
 で $f(x)$ は 提小値をとるから $a_1=\sqrt{10}$

(2)
$$f_n(x) = \frac{1}{3}x^3 - 10anx (x \ge 0) と すると$$

 $f'_n(x) = x^2 - 10an = (x + \sqrt{10an})(x - \sqrt{10an})$ (an > 0 まり)
 $f_n(x) = x^2 - 10an = (x + \sqrt{10an})(x - \sqrt{10an})$

いえに
$$x = \sqrt{10an}$$
 で $f_n(x)$ は我小値をとるから $a_{n+1} = \sqrt{10an}$ かなりたつ

(3)
$$a_{n} > 0 \pm i$$
) $a_{n+1} = \sqrt{10a_{n}}$ of FRIFTON'S

 $log_{10} a_{n+1} = log_{10} \sqrt{10a_{n}}$
 J_{27}
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$
 $log_{10} a_{n+1} = \frac{1}{2} (log_{10} 10 + log_{10} a_{n}) \pm i$

$$l_{n+1}-1=\frac{1}{2}(l_{n}-1)$$
 より
$$l_{n-1}+1 + 初項 l_{n}-1=\frac{1}{2}-1=-\frac{1}{2}, att = 0 等tt 数约 にから l_{n-1}=-\frac{1}{2}x(\frac{1}{2})^{n-1}$$
 よなる

(5)
$$T = \frac{a_1 a_2 a_3}{100} EB(E a_n)0 E^{ij} = 0 \text{ The Like is}$$

$$log_{10}T = log_{10} \frac{a_1 a_2 a_3}{100} = log_{10}a_1 + log_{10}a_2 + log_{10}a_3 - log_{10}100$$

$$= (1 - \frac{1}{2}) + (1 - \frac{1}{4}) + (1 - \frac{1}{8}) - 2$$

$$= 1 - \frac{4 + 2 + 1}{8} = \frac{1}{8}$$

$$3.7 \quad T = 10^{\frac{1}{8}} 3^{1}) \quad \boxed{\frac{0.0203}{100} = 10^{\frac{1}{8}}} \quad \text{E.43}$$

1から6の素因数のうち 5を除いた 1,2,3,4,6の最小公倍数 は12. (τ) 出た目が12の約数となる確率は1.2,3,4,6がでる場合を考えて れ≦11のときのそれぞれについて「個さいころをなけて出た目がれの約数と なる確率を示めると

9=1 で 1のみで確幸 6 n=2 で 1,2の場合となり 確幸 6 m=3 で 1,3の場合となり 確幸 6

以下 M=4,5,...,11 について表にまとめると以下のようになる

rx L	171 - 4 1 3	•						
<u></u>	4	5	6	7	B	9	10	11
•	_		1026	1.7	124	1.3	1,2,5	1
巧	1,2,4	7	4 6	2	3	2	3	1
排字	3	5	6	6	6		0	
	·							

577 1個のさいころを数げて出た目がnの約数となる確率がをとなる ような最小ののは 9=12

20=235より、3回ともしかなかなからが出る必要がある (3)但し3回め目の積が20以下とみるので 3回の数字が (1.1.1),,(1,1,2),(1,1,4);(1,1,5), (1,2,2), (1,2,5), (1,4,5), (2,2,5)

(i)
$$(1.1.1)$$
 0.65 $(\frac{1}{6})^3 = \frac{216}{1}$

(f) (1,1,2), (1,1,4), (1,1,5), (1,2,2), (2,2,5)

けりずれをぬば いるな非なは (前(前(前) $\frac{1}{216} \times 1 + \frac{3}{216} \times 5 + \frac{6}{216} \times 2 = \frac{1+15+12}{216} = \frac{28}{216} = \left| \frac{7}{54} \right| \times 23$

$$\begin{cases} C: \ \ y = ax^2 + bx + C & (a \neq 0) \\ l_1: \ \ y = -3x + 3 \\ l_2: \ \ y = x + 3 \end{cases}$$

$$l_1: y=-3x+3$$

$$l_2: y = x + 3$$

(1) Cとし、を連立にして

$$0x^2+6x+C=-3x+3$$
 s)

$$0.92^{2} + (l+3) \times + (c-3) = 0 - 0 \quad (a \neq 0)$$

これが重解をもつから 判別式をD1とすると D1=0 より

$$D_1 = (L+3)^2 - 4a(c-3) = 0$$
 -2 7'53

また Cとlo を連立にして

$$\alpha x^2 + bx + C = \Re + 3 + 1$$

$$ax^{2} + (b-1)9(+(c-3) = 0 - 3)$$
 (a+o)

これが重解をもつから 判別式をD2とするとD2=Oより

$$D_2 = (b-1)^2 - 4a(c-3) = 0 - \oplus z^* - 53$$

(2)-
$$(l+3)^2 - (l-1)^2 = 0 + 9$$

これを②に代入して 4-4a(C-3)=0より

$$ac = 3a+1$$

$$a \neq 0 \neq 0$$

$$C = 3 + \frac{1}{a}$$

(1) f) CII $y = ax^2 - 9(+3 + \frac{1}{a})$ 2" b = 3 or 2" (2)

Cが火軸と異なる豆点で交りるとさ

$$\alpha x^2 - 3(+3 + \frac{1}{\alpha} = 0$$
 (\alpha \displa 0)

の判別式を Dとすると D>のより

$$D = (-1)^{2} - 4a(3 + \frac{1}{a}) > 0 \ Ebb$$

この不喜式をみたすとき 40く0ょり Qく0だから 両辺 $\alpha(<0)$ であると $-\frac{1}{\alpha}<4$.

雨四 引をかけて カラーチ、またのくのでもあるから -4く 10 となる

(別所) Q<-1 であり $y = \frac{1}{a}$ のグラフの $0 < -\frac{1}{4}$ の部分を考立で1-4~点<0