0 以上のすべての整数 n に対し, $I_n=\int_0^{\frac{\pi}{2}}\sin^nx\,dx$ とおく.このとき,次の問いに答 えよ.

- (1) I_2 および I_3 を求めよ.
- (2) 2以上のすべての整数 n に対し,等式 $I_n = \frac{n-1}{n} I_{n-2}$ が成立することを示せ.
- (3) 1 以上のすべての整数 n に対し, $I_{2n+1} \leq I_{2n} \leq I_{2n-1}$ が成立することを示し, $\lim_{n o \infty} rac{I_{2n}}{I_{2n+1}}$ を求めよ.
- (4) I_{2n} および I_{2n+1} を求めよ. (5) 等式 $\frac{1}{I_{2n+1}} = \sqrt{\frac{1}{I_{2n}I_{2n+1}}} \sqrt{\frac{I_{2n}}{I_{2n+1}}}$ を用いて、 $\lim_{n\to\infty} \frac{1}{\sqrt{n}I_{2n+1}}$ を求めよ.
- (6) $\lim_{n\to\infty}\sqrt{n}_{2n}\mathrm{C}_n\left(\frac{1}{2}\right)^{2n}$ を求めよ、ただし、 $_n\mathrm{C}_k$ は n 個から k 個取る組合せの総 ['23 大阪教育大]