(1)
$$f(x) = x^{n+1}e^{-x}$$
 or $z = f'(x) = (n+1)x^ne^{-x} + x^{n+1}x(-e^{-x})$
= $f(n+1) - x f(x^ne^{-x})$

				,
\mathbf{x}	0		91+1	
f'(x)		+	0	
(x)		7	最大	7

$$s_{>7}$$
 f(x)の増減をは左のようになり、
 $Q = n+1$ で f(x)は最大値をとり
その値は f(n+1) = $\left(\frac{n+1}{e}\right)^{n+1}e^{-(n+1)}$
 $= \left(\frac{n+1}{e}\right)^{n+1}$ となる

(2)
$$x>0$$
のとき $f(x) = x^{n+1}e^{-x}$ は明らかに正であり
また $f(x)$ の 散大値が $\left(\frac{9n+1}{e}\right)^{4n+1}$ であることから
 $0< x^{n+1}e^{-x} \le \left(\frac{n+1}{e}\right)^{4n+1}$ かなりたつ
すべての D を x (>0) z " 中ると
 $0< x^{n}e^{-x} \le \frac{1}{x}\left(\frac{n+1}{e}\right)^{n+1}$ がなりたっ
ここで $\left(\frac{n+1}{e}\right)^{n+1}$ は 定数 より $\lim_{x\to +\infty} \frac{1}{x}\left(\frac{n+1}{e}\right)^{n+1} = 0$ であるから
はさみうちの 原理より $\lim_{x\to \infty} x^{n}e^{-x} = 0$ かいなりたつ

(3) 「すべての自然校のについて、 $\lim_{x \to \infty} \int_0^x t^n e^{-t} dt = n!$ 」を $e^{-t} dt = n!$

(i)
$$m = 10 \times 3$$
 $\lim_{x \to \infty} I_n(x) = \lim_{x \to \infty} I_1(x)$

$$= \lim_{x \to \infty} \int_0^x t' e^{-t} dt$$

$$= \lim_{x \to \infty} \int_0^x t(-e^{-t})' dt$$

$$= \lim_{x \to \infty} \left[[t(-e^{-t})]_0^x - \int_0^x (-e^{-t}) dt \right]$$

$$= \lim_{x \to \infty} \left(x(-e^{-x}) - [e^{-t}]_0^x \right)$$

$$= \lim_{x \to \infty} \left(-xe^{-x} - \frac{1}{e^x} + 1 \right)$$

$$= 0 - 0 + 1 = 1! \quad ((2) + 1) \lim_{x \to \infty} xe^{-x} = 0$$

よって か=1のとき 面はなりたつ.

(ii) n= k(kは自然数)で面かなりたつとす3と

$$\lim_{x \to \infty} I_k(x) = k! \quad \text{the without } x$$

ここで カニ ドナーのとぎ

$$\lim_{x \to \infty} I_{k+1}(x) = \lim_{x \to \infty} \int_{0}^{x} t^{k+1} e^{-t} dt$$

$$= \lim_{x \to \infty} \int_{0}^{x} t^{k+1} (-e^{-t})' dt$$

$$= \lim_{x \to \infty} \left[t^{k+1} (-e^{-t}) \right]_{0}^{x} - \int_{0}^{x} (k+1) t^{k} (-e^{-t}) dt$$

$$= \lim_{x \to \infty} \left(-x^{k+1} e^{-x} + (k+1) \int_{0}^{x} t^{k} e^{-t} dt \right)$$

$$= \lim_{x \to \infty} \left(-x^{k+1} e^{-x} + (k+1) I_{k}(x) \right) = 0$$

227"(2) = 0

まに lim Ik(X)= k! であるから

 $J_{2} = \lim_{k \to \infty} \int_{\mathbb{R}^{+1}} (x) = (k+1)! \, dy = M = k+1 \, n \in \mathbb{R}^{+1} \, \oplus \, \mathbb{R}^{+1}$

(i) がりよりすべての自然我ので、日かなりたフから

ずべての自然物ので
$$\lim_{x\to\infty}\int_0^x t^n e^{-t} dt = n!$$
 とび3