- 0以上の自然数nに対して $I(n) = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} {}_n C_k$ とおく。ただし、 ${}_0 C_0 = 0$ である。
- (1) I(0), I(1), I(2), I(3) の値をそれぞれ求めよ。
- (2) $(1-y^2)^n$ を二項定理を用いて展開することにより $I(n) = \int_0^1 (1-y^2)^n dy$ であることを示せ。
- (3) $y = \sin x$ と置換することにより $\int_0^1 (1 y^2)^n dy = \int_0^{\frac{\pi}{2}} (\cos x)^{2n+1} dx$ であることを示せ。
- (4) $n \ge 1$ のとき、 $\frac{d}{dx} \{ (\cos x)^{2n} \sin x \} = (2n+1)(\cos x)^{2n+1} 2n(\cos x)^{2n-1}$ であることを示せ。
- (5) $n \ge 1$ に対して I(n) < I(n-1) であること、および $\lim_{n \to \infty} \frac{I(n)}{I(n-1)} = 1$ であることを示せ。 ['04お茶の水女子大]